Generating Maps on Surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Functions of Bipartite Maps on Orientable Surfaces

We compute, for each genus g > 0, the generating function Lg ≡ Lg(t; p1, p2, . . . ) of (labelled) bipartite maps on the orientable surface of genus g, with control on all face degrees. We exhibit an explicit change of variables such that for each g, Lg is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function Fg of...

متن کامل

Generating disjoint incompressible surfaces

Article history: Received 1 February 2008 Accepted 6 November 2010

متن کامل

Counting unicellular maps on non-orientable surfaces

A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a nonorientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a recurrence equation that leads to (new) explicit counting...

متن کامل

Regular Maps on Non-orientable Surfaces

It is well known that regular maps exist on the projective plane but not on the Klein bottle, nor the non-orientable surface of genus 3. In this paper several infinite families of regular maps are constructed to show that such maps exist on non-odentable surfaces of over 77 per cent of all possible genera. Mathematics Subject Classification (1991): 05C25.

متن کامل

On Quasiconformal Harmonic Maps between Surfaces

It is proved the following theorem, if w is a quasiconformal harmonic mappings between two Riemann surfaces with smooth boundary and aproximate analytic metric, then w is a quasi-isometry with respect to Euclidean metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2017

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-016-9853-8